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S
cientific understanding is increasingly
derived from studies of single-
molecule physical properties and in-

teractions. As such measurements become
more robust, single-molecule metrology
tools are being dramatically enhanced by
combining additional signals providing fur-
ther chemical, physical, and electronic
information.1�8 For instance, single-
molecule fluorescent labeling can be per-
formed with fluorophores sensitive to spe-
cific environmental conditions9 or using op-
tics with anisotropic point-spread functions
that can be analyzed to localize position in a
third dimension.10 Scanning probe topo-
graphic measurements can be performed
with a functionalized atomic force micro-
scope (AFM) tip that simultaneously pro-
vides both topographic and chemical infor-
mation based on changes in cantilever
resonance.11

Here, we have used the microwave fre-
quency alternating current scanning tun-
neling microscope (ACSTM)1,2,4,5,12 to im-
age the topography and polarizability of
single molecules simultaneously. Standard
STM topography measurements are per-

formed with a constant DC bias applied to
the tip. Previously, we have reported that a
microwave frequency generator can be
used to modulate the DC bias in the STM, a
capability that enables imaging on semi-
conducting and insulating surfaces by mea-
suring tunneling both to and from the
surface.

Polarizable molecules have a “soft” elec-
tron cloud that deforms in response to the
high-frequency bias modulation, in turn
modulating the tunneling current. Thus,
the magnitude of the transmitted micro-
wave frequency modulation correlates with
the polarizability of the molecule in the tun-
neling junction. Since the microwave fre-
quency modulation (GHz) is fast relative to
the feedback loop (1 kHz), polarizability can
be collected simultaneously with standard
molecular topography images. Although
polarizability is also known to contribute to
topographic imaging,13,14 here we are able
to deconvolve the two components. Using
this technique, we have imaged a variety of
families of self-assembled monolayers
(SAMs), compared relative experimental
and calculated polarizabilities for each mol-
ecule, and used these measurements to
study single-molecule switches.

Measurements made on surfaces have
fundamental differences from those per-
formed in the gas phase, which are impor-
tant in the context of molecular devices.
Gas-phase molecular polarizabilities reflect
the dispersion forces within and between
molecules. On surfaces, the measured elec-
tronic response also includes substrate elec-
trons to the extent that these are coupled
into the molecules. Such coupling is integral
to the electronic behavior of the molecule
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ABSTRACT We have measured the polarizabilities of four families of molecules adsorbed to Au{111} surfaces,

with structures ranging from fully saturated to fully conjugated, including single-molecule switches. Measured

polarizabilities increase with increasing length and conjugation in the adsorbed molecules and are consistent with

theoretical calculations. For single-molecule switches, the polarizability reflects the difference in

substrate�molecule electronic coupling in the ON and OFF conductance states. Calculations suggest that the

switch between the two conductance states is correlated with an oxidation state change in a nitro functional

group in the switch molecules.
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and is known to vary with both the orientation of the

molecule and the substrate topography.8,15�18 The

measurements described here are uniquely able to ana-

lyze the relationship between polarizability and these

other physical factors.

RESULTS AND DISCUSSION
For comparison to experiment, molecular polariz-

abilities were calculated using density functional theory

(DFT) with the B3LYP functional and a 6-31��G** basis

set (Table 1).19 These include calculations for molecules

aligned normal to the surface and in tilted conforma-

tions and for both anionic and neutral states of the

nitro-functionalized oligo(phenylene ethynylene) (OPE)

molecules (Figure 1A, bottom). While we have shown

that we do not need to oxidize nor reduce the mol-

ecules directly in order to cause switching (an applied

electric field without current flow is sufficient),15,17 it is

possible that the ground states of molecules in differ-

ent tilt conformations have different oxidation states.

We probed the polarizabilities of the molecules

shown in Figure 1A by forming SAMs of octanethiolate

(C8), dodecanethiolate (C12), 3-mercapto-N-

nonylpropionamide (1ATC9), and unfunctionalized

OPE molecules (4,4=-di(ethynylphenyl)-1-benzenethiol).

We further related the polarizability to conductance

switching by inserting single nitro-functionalized OPE
switch molecules (4,4=-di(ethynylphenyl)-2=-nitro-1-

benzenethiol) into host C12 SAMs. Figure 1B shows a

schematic of this insertion with a single-molecule

switch bound in a defect site of a host C12 SAM on

Au{111} within the ACSTM tunneling junction.

Devices based on electronic switches are central to

modern information technology. As miniaturization of

such devices continues, nanostructures and single mol-

ecules that exhibit conductance switching must be un-

derstood and controlled within their physical environ-

ment.21 To accomplish this, we must have the

capabilities to address single switch molecules in both

their ON and OFF conductance states, to predict when

each molecule will be active as a switch, and to control

their switching. By applying ACSTM imaging to sys-

tems of isolated OPE switch molecules, we are able to

locate and to predict which molecules are likely to be

active either through switching or through increased

TABLE 1. Calculated Polarizabilities (�) of Adsorbed
Molecules in Atomic Units (Bohr3) Using Density
Functional Theory As Described in the Texta

molecule � �molecule/�C12

octanethiol (C8)
normal 158
tilted 30° 143 0.76

dodecanethiol (C12)
normal 199
tilted 30° 189 1.00

1ATC9
normal 241 1.28
tilted 18° 232 1.23

OPE
normal 810 4.29
tilted 30° 643 3.40
tilted 45° 475 2.51

nitro OPE
(neut, neut geom.)

normal 871 4.61
tilted 30° 690 3.65
tilted 45° 508 2.69

(neut, anion geom.)
normal 918 4.86
tilted 30° 725 3.84
tilted 45° 531 2.81

(anion, neut geom.)
normal 1289 6.82
tilted 30° 1005 5.32
tilted 45° 722 3.82

(anion, anion geom.)
normal 1127 5.96
tilted 30° 882 4.67
tilted 45° 639 3.38

aCalculations are performed for molecules in the gas phase, with no explicit contri-
bution from substrate atoms. Values are normalized to the polarizability of dode-
canethiolate tilted at 30° relative to the surface normal. Polarizabilities for tilted con-
figurations are calculated along the axis of the applied field, assumed to be the
same as the surface normal. Extending these calculations to consider the molecular
polarizability within the monolayer and contributions from electrode atoms will
modify these numbers somewhat.20

Figure 1. (A) Structures of molecules used in this study. (B)
Schematic of the AC scanning tunneling microscope
tip�sample junction containing self-assembled molecules
of a C12 host SAM with a single switch molecule inserted at
a defect site in the SAM. Microwave frequency bias modula-
tions are applied from the STM tip and are used to measure
the polarizabilities of the molecules in the junction.
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motion.22 We can switch the conductance states of
single molecules while simultaneously mapping the
microwave difference frequency (MDF) signal to con-
firm the location of each switch (even when it is not vis-
ible in conventional STM topography) and to deter-
mine differences in the molecule�substrate coupling
due to bonding and structural changes.

A number of techniques have been used to study
fully conjugated OPE molecules for use as molecular
wires and molecular switches.7,15�18,21�31 When single
OPE molecules are isolated within host alkanethiolate
SAM matrices and imaged using STM, they exhibit
bistable conductance switching, defined as ON when a
molecule appears to protrude from the host matrix and
OFF when the molecule is less protruding (or no longer
visible within the host matrix). The apparent height of
the molecule depends on (among other things) the
thickness of the alkanethiolate SAM and the location
of the molecule within the matrix.18 The observed
switching is due to a convolution of the physical height
(change) of the molecule and the conductance of the
molecule�substrate system.15,16 Previously, we

showed that conductance switching was regulated by
the packing of and interactions with the host
matrix,15,16,29,30 that the OPE molecules exhibited mo-
tion within the host matrix,15,18 and that the switching
and motion events occurred on time scales faster than
those of STM imaging.22 Several hypotheses for the ob-
served conductance switching were tested by modify-
ing the molecular design of the OPE moieties.17 The
only mechanism consistent with our and others’ results
is a change occurring at the substrate�molecule inter-
face, which we posit to be a change in hybridization be-
tween the substrate and the molecule occurring mainly
via molecular tilt.15,16,25,29,30 Theoretical data likewise
suggest that changes in the Au molecule bonding and
the Au�Au arrangements strongly modify molecular
conductance.32�35 Here, molecular polarizability pro-
vides insight into the dynamics of the buried interface.

Molecular polarizabilities were measured locally
and imaged using ACSTM in which two microwave fre-
quency AC signals (in the range of 0.5�20 GHz), offset
by a difference frequency (5 kHz), were combined with
the DC bias voltage. The current used for the STM imag-
ing feedback loop is dominated by the DC bias, with
small contributions from the rectified AC signals. Apply-
ing two AC frequencies into our nonlinear tunneling
junction enables us to measure the heterodyned AC sig-
nal at the difference frequency. We recorded the sig-
nals due to the applied microwave frequencies through
the current preamplifier (bandwidth �30 kHz).1,36 To
obtain microwave spectra and images, we used a
lock-in amplifier referenced at the difference frequency
to analyze the tunneling current, which carried the het-
erodyned microwave frequency information. The mag-
nitude of the MDF signal is dependent on both the po-
larizability of the molecules and the STM tip-sample
junction; therefore, the polarizability MDF images are,
at present, relative measurements. We are able to com-
pare the polarizabilities of molecules by measuring mul-
ticomponent monolayers and for switches by measur-
ing the same molecules in the ON and OFF states. Thus,
we are able to probe the electronic connection be-
tween the switch molecules and substrate (i.e., the
contacts37�40) by measuring polarizability (vide supra).

Figure 2 shows three different monolayers imaged
using ACSTM and the corresponding schematic of each
monolayer. These include fully saturated (no multiple
bonds), partially saturated, and fully conjugated mol-
ecules, all of which form ordered monolayers. It also in-
cludes the simultaneously obtained polarizability maps.
To compare the polarizabilities of different length al-
kanethiolate SAMs (shown schematically in Figure 2A),
we formed a C12 monolayer and vapor-annealed it with
octanethiol, thereby forming domains of C12 and C8.41

The topographic (Figure 2B) and MDF polarizability (Fig-
ure 2C) images for a C12/C8-separated monolayer were
recorded, and a small contrast was observed between
the C12 and C8 molecules in the MDF signal. This small

Figure 2. (A) Schematic, (B) topographic image, and (C) simultaneously re-
corded microwave difference frequency (MDF) image of an artificially sepa-
rated self-assembled monolayer (SAM) containing dodecanethiolate (C12)
and octanethiolate (C8) (see text). The topographically more protruding C12
molecules have a larger MDF signal. (D) Schematic and (E) topographic im-
age of a 1ATC9 SAM. Molecules with buried amide functionalities assemble
with varied tilts from normal to 18° from surface normal to enable hydrogen
bonding.42 (F) Microwave difference frequency image for a 1ATC9 SAM.
Note that the topographically less protruding 1ATC9 molecules have a
larger MDF signal. (G) Schematic of an OPE SAM with structure based on
the model proposed by Liu and co-workers who have measured a tilt of less
than 5° for the molecules in this monolayer.43 (H) Topographic image and
(I) MDF image of an OPE SAM. This molecule has a larger polarizability than
the alkanethiolate and amide-containing molecules, and thus we observe a
larger MDF signal. Imaging conditions: Vsample � �1.0 V, Itunnel � 1.0 pA, ap-
plied frequency � 2 GHz, difference frequency � 5 kHz, nominal input power
level � 10 dBm.
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contrast was expected from the microwave spectra re-
corded over the different length alkanethiolate chains
since the calculated C8 polarizability is �76% that of
C12.

When we imaged monolayers formed at room tem-
perature from 1ATC9 molecules containing buried
amide functionalities that are able to form hydrogen
bonds, we observed two apparent height domains in
the images, which we interpret as being due to differ-
ent polar tilt angles of the 1ATC9 molecules (shown
schematically in Figure 2D). This observation is consis-
tent with surface infrared spectroscopy data that mea-
sured the possible tilt angles (between normal and
tilted 18° from normal) to the surface to enable hydro-
gen bonding of the amide functionality.42 When we im-
aged these monolayers, the apparent topographically
less protruding (tilted) domains (Figure 2E) had a stron-
ger MDF polarizability signal (Figure 2F) than the more
protruding (normal to the surface) domains. Since the
1ATC9 molecules within the tilt domains are identical,
and since their calculated gas-phase polarizabilities
change very little when normal to the surface or tilted,
we posit that the difference in the polarizabilities be-
tween the tilt domains is due to differences in the bond-
ing at the molecule�surface interface.44

The monolayer packing of unfunctionalized OPE
molecules has been described previously and is shown
schematically in Figure 2G with the phenyl rings on
neighboring molecules aligned perpendicular to one
another.43 From our polarizability calculations, we ex-
pect the unfunctionalized OPE molecules to have polar-
izabilities �3�4 times that of C12, and when we mea-
sured these monolayers (Figure 2H), we found the
experimental (relative) polarizabilities (Figure 2I) to be
�3 times that of C12.

We are unable to assemble complete, ordered
monolayers of the nitro-functionalized OPE switch mol-
ecules due to their typical disorder and their limited sta-
bility in air.44 However, using the insertion scheme de-
tailed above, we are able to measure the polarizabilities
and to follow the dynamics of these OPE-based single
switch molecules. Time-lapse series of STM images re-
corded over fixed areas (500�1000 Å)2 enabled us to
record and to extract switching behavior and polari-
zabilities for each molecule in each frame (�5 min/
frame) over several (8�18) hours. The first frame from
one series of images is shown in Figure 3A,B, topogra-
phy and MDF magnitude, respectively. Each inserted
OPE molecule has been numerically labeled to corre-
spond to the extracted frames in Figure 3C, which dis-
play the most dynamic 25 frames for each inserted
molecule.

Since we are able to use MDF imaging to measure
the polarizabilities of the nitro-functionalized OPE mol-
ecules, even at times when the molecules did not ap-
pear in the topographic images, we have used this as a
means to locate switches in the OFF state and have at-

tempted to switch molecules deterministically using

the electric field applied by the STM tip.15 Our ability

to switch these molecules was indicated (predicted) by

instabilities in the MDF signal prior to applying the

switching field. We and others have shown that sub-

strate atom motion is important in switching.22,45 Also

note that we could deterministically switch OPE mol-

ecules from the ON to the OFF conductance state us-

ing the electric field applied by the STM tip without de-

sorbing the switches, as shown in Figure 4. Controlled

switching required different bias voltage magnitudes

and tunneling gaps for different molecules, presumably

due to the varied chemical environment created by de-

fects in the surrounding monolayer matrix.15,16,29,30 A

more reliable method for controlled switching and sta-

bilized conductance states has been demonstrated us-

ing the applied electric field and the stabilizing effects

of hydrogen-bonding interactions between the active

molecules and a specifically designed matrix;29,30 how-

ever, for the purposes of this work, we have shown ex-

amples using only electric field.

Figure 3. Simultaneously acquired (A) topographic and (B)
MDF images of a dodecanethiolate SAM with inserted nitro-
functionalized OPE molecular switches. A series of 200 im-
ages was acquired (5 min/frame, 30 s between frames). (C)
Areas of 120 Å � 120 Å were extracted for each inserted mo-
lecular switch in each image. The numbers for the extracted
series correspond to the labels in (A) and (B). The most dy-
namic 19 sequential frames are shown for each: 1 frames
4�22, 2 frames 93�112, 3 frames 88�107, 4 frames 4�21,
and 5 frames 133�152. Molecules that were stable (did not
switch or exhibit motion) had a constant MDF profile, as
shown for 1. Molecules that switched OFF showed fluctua-
tions in the MDF images before they switched, highlighted
by yellow boxes in 2 and 3. Note that, in 3, the OPE molecule
still appeared in the MDF images after the molecule
switched OFF (highlighted by red box in 3). Molecules that
exhibited motion within the SAM showed fluctuations in the
MDF images as in 4 and 5. Imaging conditions: Vsample �
�1.0 V, Itunnel � 2.0 pA, applied frequency � 2 GHz, differ-
ence frequency � 5 kHz, input power level � 10 dBm.
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Figure 4A�D shows a molecule switched from the

ON to the OFF conductance states (boxed in Figure

4A,B), of topography and MDF magnitude, respec-

tively.46 The same area was imaged after switching (Fig-

ure 4C,D, topography and MDF image, respectively);

the molecule’s signature no longer appeared in the to-

pographic image (it “disappears” into the matrix), but

MDF imaging confirmed that the nitro-functionalized

OPE switch was still present after the molecule was

switched OFF. The ratios of the MDF signal for the ON

and OFF nitro-functionalized OPE molecules to C12

were 6.8 � 3.6 and 2.5 � 1.0, respectively. The ON state

had a similar ratio to that calculated for the anionic

nitro-functionalized OPE molecules oriented normal to

the surface, while the OFF state ratio is most similar to

the calculations for the neutral nitro-functionalized OPE

molecule having a tilted geometry (Table 2). This large

ratio between ON and OFF states indicates that the con-

tribution to the measured polarizabilities of the mol-

ecules in the ON state due to the substrate electrons is

substantial and at least equal to the contribution from

the molecules’ electrons.

Previously, we were typically limited to studying

only molecules that appeared at some point in the ON

conductance state during imaging, due to the difficulty

in locating molecules continually in the OFF state in

large topographic images.15,16 With this method, we

have the additional capability of locating, imaging, and

measuring molecules that are in the OFF conductance

state and do not appear in topography.

Figure 4E�H shows a molecule that was switched

from the OFF conductance state to the ON state. In

the initial topographic and MDF image (Figure 4E,F,

topography and MDF image, respectively), the signa-

ture for the boxed molecule appeared in the MDF

image and only as a slight protrusion in the topo-

graphic image. After several voltage pulses, the mol-

ecule switched to the ON conductance state (Figure

4G,H, topography and MDF image, respectively). This

process is reversible. Note that the process also de-

Figure 4. Controlled switching from the ON to the OFF (A�D) and from
the OFF to the ON (E�H) conductance states for nitro-functionalized
OPE molecules inserted into C12 SAMs. (A,B) Simultaneously acquired
topographic and MDF images in which two OPE molecules appear in
the ON conductance state. After acquisition of these images, the STM
tip was moved off center from the boxed molecule and the STM tip was
moved 10 Å toward the sample five times (100 ms for each motion), fol-
lowed by five voltage pulses from the tip (�2.0 V; 10 pA; 100 ms). We
hypothesize that this loosened the SAM matrix41 and allowed the mol-
ecule to switch from the ON to the OFF conductance states as shown
in the subsequently acquired topographic (C) and MDF (D) images.
The MDF image indicated that the molecule remained in the same
location, even though it did not appear in the topographic image.
(E,F) Simultaneously acquired topographic and MDF images where
the boxed molecule does not appear in the topographic images but
was imaged by the MDF. After three sequential images, each fol-
lowed by moving the tip off center from the molecule and apply-
ing a voltage pulse (�1.0 V; 7 pA; 100 ms, final pulse, �1.5 V; 2 pA;
100 ms), the molecule switches to the ON conductance state as im-
aged in topography (G) and the simultaneous MDF image (H). Im-
aging conditions: Vsample � �1.0 V; Itunnel � 1.0 pA (A�D); Itunnel �
2 pA (E�H); applied frequency � 2 GHz; difference frequency �
5 kHz; input power level � 10 dBm.

TABLE 2. Comparison of Calculated and Experimental
Polarizabilities for Nitro-Functionalized OPE Moleculesa

model parameters experiment

charge neutral neutral anionic anionic
geometry neutral anionic neutral anionic ON

tilt 0° (normal) 4.61 4.86 6.82 5.96 6.8 � 3.6
30° 3.65 3.84 5.32 4.67 OFF
45° 2.69 2.81 3.82 3.38 2.5 � 1.0

aPolarizabilities were modeled for molecules in neutral and anionic states, with ge-
ometries optimized for either neutral or anionic states as indicated. Tilt indicates the
modeled molecular tilt relative to the applied field. Polarizability is calculated in
the direction of the field. Experimentally measured polarizabilities for nitro-OPE
molecules in the ON and OFF states are compared with the closest theoretical
matches: the anionic state with 0° tilt for molecules in the ON state, and the neu-
tral state with 45° tilt for molecules in the OFF state (highlighted in bold).
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stabilized the STM tip somewhat, leading to noisier
images.15,16

CONCLUSIONS AND PROSPECTS
Using the ACSTM to obtain MDF images, we are

able to measure single-molecule polarizabilities and to
correlate them with calculated values. This enables us
to relate the conductance state with the electronic cou-
pling between the molecules and their contacts. As
frustrated rotations partly determine this coupling, and
electric fields can be used to actuate the switches, at
higher applied microwave amplitudes, it may also be
possible to determine the slew rates of the switches,
which are expected to be in this range.6,7,21,22

The ability to measure conjugation and surface
contact provides unique insights into the electronic
interactions between single molecules and their im-
mediate environment. The measurements described

simultaneously and independently characterize sur-
face topography and the substrate coupling at the
buried interface. This is important because the be-
havior of conductive molecules depends strongly on
their local coupling with macroscale electrodes, a
fact that has hindered development in the field of
molecular electronics.

Dielectric response measurements should also be
possible at higher amplitude, enabling direct experi-
mental evaluation of the relationship between indi-
vidual dopant atom placement and nanoscale material
properties in semiconductors.

Finally, we anticipate that these measurements may
also enable chemical identification of local structural
features in a macromolecule based on polarizability.
Such a capability could represent a direct method for
label-free, real-space structure determination from a
single molecule.

EXPERIMENTAL AND THEORETICAL METHODS
Materials. The chemicals octanethiol, dodecanethiol, tetrahy-

drofuran (Sigma-Aldrich, St. Louis, MO), and 200-proof ethanol
(Pharmco, Brookfield, CT) were used as received. Syntheses of
compounds 4,4=-di(ethynylphenyl)-1-benzenethiol (OPE), (4,4=-
di(ethynylphenyl)-2=-nitro-1-benzenethiol) (nitro-OPE), and
3-mercapto-N-nonylpropionamide (1ATC9) have been de-
scribed previously.47,48

Sample Preparation. The SAM matrices were formed on Au{111}
on mica substrates (Agilent Technologies), which were annealed
with a hydrogen flame immediately prior to film preparation. Ma-
trices studied for polarizability were deposited from 1 mM ethan-
olic solutions of the matrix molecule for 24�48 h. Monolayers used
for subsequent insertion were deposited from 1 mM solutions of
dodecanethiol in ethanol for 5 min. This short adsorption time
forms a less ordered matrix and enables more switching of the in-
serted molecules.15 The samples were rinsed with neat ethanol and
blown dry with nitrogen. Insertion of OPE was performed under a
nitrogen environment by placing the preformed SAMs into 0.1 mM
solutions of 4,4=-di(ethynylphenyl)-1-benzenethiol in tetrahydrofu-
ran for 1 min. The samples were rinsed with ethanol after insertion
and dried with nitrogen prior to imaging.

STM Measurements. All STM measurements were performed in
a custom Besocke-style STM under ambient conditions. The
STM is equipped with two microwave frequency generators
(Hewlett-Packard, 8263B), which are used to add a sinusoidal
bias modulation at microwave frequencies from 0.5 to 20
GHz.2�5 The applied frequencies are offset by a small difference
frequency (typically 5 kHz), mixed (Hewlett-Packard, 87302C),
and split through a directional coupler (Hewlett-Packard,
87300C). One output of the directional coupler is combined
with the DC bias voltage using a bias tee (Hewlett-Packard,
11612A) and used to apply a bias to the STM tip. The other out-
put first passes through a detector diode (Narda, 4503A), then to
a low-pass filter (Frequency Devices, ASC-50), which amplifies
the difference signal before passing it to the lock-in amplifier
(Stanford Research Systems, SR850) as a reference. Microwave
difference signals applied to the sample through the STM tip first
passed through the current preamplifier (Axon CV-4, bandwidth
30 kHz) and were detected at the lock-in amplifier.

Theory. Polarizability values were calculated using density
functional theory (DFT) with the B3LYP functional and a
6-31��G** basis set.19 These include calculations for molecules
aligned normal to the surface and in tilted conformations and for
both anionic and neutral states of the nitro-functionalized OPE
molecules. Calculations are performed for molecules in the gas
phase, with no explicit contribution from substrate atoms.
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